Biosynthesis of gold nanoparticles by the extreme bacterium Deinococcus radiodurans and an evaluation of their antibacterial properties
نویسندگان
چکیده
Deinococcus radiodurans is an extreme bacterium known for its high resistance to stresses including radiation and oxidants. The ability of D. radiodurans to reduce Au(III) and biosynthesize gold nanoparticles (AuNPs) was investigated in aqueous solution by ultraviolet and visible (UV/Vis) absorption spectroscopy, electron microscopy, X-ray diffraction (XRD), dynamic light scattering (DLS), Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). D. radiodurans efficiently synthesized AuNPs from 1 mM Au(III) solution in 8 h. The AuNPs were of spherical, triangular and irregular shapes with an average size of 43.75 nm and a polydispersity index of 0.23 as measured by DLS. AuNPs were distributed in the cell envelope, across the cytosol and in the extracellular space. XRD analysis confirmed the crystallite nature of the AuNPs from the cell supernatant. Data from the FTIR and XPS showed that upon binding to proteins or compounds through interactions with carboxyl, amine, phospho and hydroxyl groups, Au(III) may be reduced to Au(I), and further reduced to Au(0) with the capping groups to stabilize the AuNPs. Biosynthesis of AuNPs was optimized with respect to the initial concentration of gold salt, bacterial growth period, solution pH and temperature. The purified AuNPs exhibited significant antibacterial activity against both Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria by damaging their cytoplasmic membrane. Therefore, the extreme bacterium D. radiodurans can be used as a novel bacterial candidate for efficient biosynthesis of AuNPs, which exhibited potential in biomedical application as an antibacterial agent.
منابع مشابه
Parameters Affecting the Biosynthesis of Gold Nanoparticles Using the Aquatic Extract of Scrophularia striata and their Antibacterial Properties
Green synthesis is a simple, low-cost, non-toxic, environmentally friendly and efficient approach touse. Leaf extract of plants rich in polyphenols, such as flavonoids, is a powerful agent in reducing thesynthesis of gold nanoparticles. The purpose of this study is to investigate the parameters affecting thebiosynthesis of gold nanoparticles using the aqueous extract of Scroph...
متن کاملBiosynthesis of Au, Ag and Au–Ag bimetallic nanoparticles using protein extracts of Deinococcus radiodurans and evaluation of their cytotoxicity
Background Biosynthesis of noble metallic nanoparticles (NPs) has attracted significant interest due to their environmental friendly and biocompatible properties. Methods In this study, we investigated syntheses of Au, Ag and Au-Ag bimetallic NPs using protein extracts of Deinococcus radiodurans, which demonstrated powerful metal-reducing ability. The obtained NPs were characterized and analy...
متن کاملIsolation and Study of S-layer Nanostructure of Deinococcus Radiodurans R1
Crystalline surface layer proteins (S-layer proteins) have considerable potential for the crystalline arrays in biotechnology, biomimetics and nonlife applications, including areas such as microelectronics and molecular nanotechnology. The extensive application potential of surface layers in nanobiotechnology is according to the particular inherent attributes of the single molecular arrays cons...
متن کاملBiosynthesis of metallic nanoparticles using plant extracts and evaluation of their antibacterial properties
The increasing attention being paid to metallic nano particles (MNPs) is due to their intensive applications in different areas of science such as medicine, chemistry, agriculture, and biotechnology. The main methods for nanoparticle production are chemical and physical approaches that are often costly and potentially harmful to the environment. Since the eco-frien...
متن کاملBiosynthesis of gold nanoparticles using streptomyces fulvissimus isolate
Objective(s): In recent years, the biosynthesis of gold nanoparticles has been the focus of interest because of their emerging application in a number of areas such as biomedicine. In the present study we report the extracellular biosynthesis of gold nanoparticles (AuNPs) by using a positive bacterium named Streptomyces fulvissimus isolate U from rice fields of Guilan Province, Iran.Materials a...
متن کامل